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An Efficient Finite-Element Formulation
Without Spurious Modes for
Anisotropic Waveguides

Istvan Bardi and Oszkar Biro

Abstract —A numerically efficient finite-element formulation
is presented for the analysis of lossless, inhomogeneously loaded,
anisotropic waveguides of arbitrary shape. The electromagnetic
field is described either by the three components of a magnetic
vector potential and an electric scalar potential or by the three
components of an electric vector potential and a magnetic scalar
potential. The uniqueness of the potentials is ensured by the
incorporation of the Coulomb gauge and by proper boundary
conditions. Owing to the implementation of the solencidality
condition for the vector potential even in the case of zero
wavenumber, no spurious modes appear. Variational expres-
sions suited to the finite-element method are formulated in
terms of the potentials. Standard finite-element techniques are
employed for the numerical solution, leading to a generalized
cigenvalue problem with symmetric, sparse matrices. This is
solved by means of the bisection method with the sparsity of the
matrices fully utilized. Dielectric- and ferrite-loaded waveguides
with closed and open boundaries and including both isotropic
and anisotropic materials are presented as examples.

1. INTRODUCTION

EVERAL finite-element formulations are in current
Suse for solving lossless, inhomogeneously loaded, arbi-
trarily shaped waveguide problems including anisotropic
material characteristics. The problem of the occurrence of
nonphysical, spurious solutions can be considered to have
been overcome. There are many ways of avoiding these
spurious solutions. The efficiency of the finite-element
codes depends to a large extent on the formulation used
for getting rid of spurious modes.

The basic cause of the spurious modes lies in the
inaccurate approximation of the zero eigenvalues and the
corresponding eigenfunctions. The eigenfunctions belong-
ing to the zero eigenvalue represent gradient ficlds satis-
fying the wave equation at zero wavenumber. Since the
multiplicity of the zero eigenvalue is infinite, any given
finite discretization, however fine, is bound to be inca-
pable of approximating some strongly varying gradient
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cigenfunctions. The resulting inaccurate approximate
eigenvalues are nonzero and are encountered as spurious
modes that are difficult to distinguish from the truly
nonzero wavenumbers. The divergence of the eigenfunc-
tions belonging to the zero eigenvalue is not zero.

The key to the elimination of spurious solutions is the
enforcement of the zero divergence of the vector field
used for the description. The formulations differ in the
way of incorporating this solenoidality condition.

Hayata et al. [3] employ the three components of the
magnetic field intensity for the description. The z compo-
nent of the magnetic field intensity is expressed by the
transversal components from the condition of zero diver-
gence. Thus, the Coulomb gauge is imposed on H, and no
spurious modes appear. The method has some disadvan-
tageous properties: it is not applicable to the case of 3-D
cavities, and the realization is rather complicated, leading
to dense matrices with matrix inversions having to be
performed.

Webb [7] imposes the Coulomb gauge by means of a
kind of penalty factor method. There are no spurious
modes and sparse matrix techniques are applicable but, as
a consequence of the Lagrange multipliers, a time-con-
suming iteration method has to be employed for the
solution of the generalized eigenvalue problem.

Hano [6] uses the three components. of either the
electric or the magnetic field intensity. The curl-curl
operator is used. Special triangular elements ensure the
continuity of the tangential components of the field vec-
tors only with no constraint on the normal components.
No spurious modes appear and there are as many zero
eigenvalues as the number of unknowns representing the
z component of the field. The implementation of the
special triangular elements in a finite element code is
rather complicated.

Svedin [9] uses all six components of the electric and
magnetic field intensities. The first-order Maxwell equa-
tions are discretized and special measures are taken to
enforce the interface conditions on the normal compo-
nents. The divergence of the vectors applied is fixed
implicitly to zero, so no spurious modes appear. The six
variables and the additional interface conditions are the
disadvantageous properties of the method. The finite-cle-
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ment code presented is valid for the case of lossy media,
too.

A recently introduced possibility of avoiding the spuri-
ous solutions is the application of the edge element
approximation [14]. The edge element approximation sets
the multiplicity of the zero eigenvalue in the discretized
problem to a finite number known in advance, so the zero
eigenvalues can be approximated with good accuracy.

In this paper, a standard finite-element method based
on nodal elements is presented. The three components of
a vector potential together with a scalar potential are
used for the description of the electromagnetic field. Two
types of potentials are introduced: a magnetic vector
potential with an electric scalar potential and an electric
vector potential with a magnetic scalar potential. The
Coulomb gauge is imposed based on the work of Biro
et al. [1]. Owing to the uniqueness of the vector potential
employed and to the fact that the solenoidality condition
is ensured even in the case of zero wavenumber, no
spurious modes appear. The method uses four scalar
variables, a disadvantage offset by the simplicity of the
finite element realization that leads to sparse matrices.
Both the magnetic and the electric vector potential de-
scriptions can be applied to both dielectric- and ferrite-
loaded waveguides, so mixed structures can be analyzed
by both methods. The method is valid for the case of
anisotropic and lossy materials as well. Presently, an
eight-node, isoparametric finite-element code is installed
for the case of ideal, anisotropic materials, The examples
presented serve to test the method and to show its appli-
cability to various types of problems.

II. PoTENTIAL DESCRIPTIONS

A waveguide inhomogeneously loaded with anisotropic
dielectric and magnetic materials is considered. The cross
section, {), of arbitrary shape is in the x—y plane and its
boundary, I', consist partly of a perfect electric conductor
and partly of a perfect magnetic wall. The relevant
Maxwell equations for the time harmonic case are

VH = jwey[€, |E (D)

(2)

where [e,] and [w,] are the tensors of the relative permit-
tivity and permeability, respectively,

For the description by a magnetic vector potential, A,
and an electric scalar potential, V' (A4, V formulation), the
potentials are introduced as

VXE=—jou[u,|H

B=Vx4 (3)

(4)

The following differential equation is to be satisfied by
these potentials:

E=—jod—VV"

VX[r,]JVXA—ki[e,]JA—ki[e,]VV=0 (5)
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where
V'=jolV (6)

[n]=[u,] " (7)
The vector potential, A4, is not defined in a unique way by
(3). Following [1], an additional term is added to (5) in
order to fix the divergence of the vector potential to zero:
VX[y,]VXA—-VyV-A—ki[e ]A—ki[e,]VV=0 (8)
where

1
Vr—gTI‘[Vr]. 9

The constant v, is arbitrary, the choice (9) is based on
dimensional reasons. “Tr” denotes the trace of the ten-
sor. Since the equation

V-(jwD) =0 (10)
no more follows from (8), this has to be prescribed explic-
itly:

V(- k2le,J(4+VV))=0. (11)

A further equation follows by taking the divergence of (8),
provided (11) holds:
V2(5V-4) = 0. (12)

This consequence equation states that the Laplacian of
v, V-4 vanishes. In order to make the vector potential
obtained as the solution of the differential equations (8)
and (11) unique, the following boundary conditions have
to be fulfilled [1]:

AXn=0 (13)
V=0 on electric walls (14)
vV-A4=0 (15)

and
[1,]VXAXn=0 (16)
— k[, (A+VV) n=0 on magnetic walls  (17)
A-n=0. (18)

Note that the boundary conditions (13) and (14) state that
the tangential component of the electric field intensity
vanishes on electric walls, and conditions (16) and (17) set
the tangential component of the magnetic field intensity
and the normal component of the electric flux density to
zero on magnetic walls. It can be shown [1] that these two
condition imply that the normal derivative of » V-4 is
zero on magnetic walls, too. Hence, as a consequence of
(12) and of boundary condition (15), the Coulomb gauge
is satisfied by the vector potential 4. Its uniqueness then
follows from the boundary conditions (13) and (18). The
uniqueness condition of the vector potential coincides
with the solenoidality condition, which is ensured even in
the case of k3 =0. This means that when the vector
potential represents a gradient field, not only its curl but
also its divergence is zero; thus, in view of the boundary
conditions (13) and (18), the vector potential itself van-
ishes, too. In this case, the ambiguity is represented by
the scalar potential, V7, being arbitrary. Obviously, any
approximation of a scalar function by nodal elements
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TABLE 1
SUMMARY OF THE DIFFERENTIAL EQUATIONS AND BoUNDARY CONDITIONS
OF DIFFERENT DESCRIPTIONS

Boundary Conditions

Description Differential Equations Electric Wall Magnetic Wall
AV VX[ IVXA-VuV-Ad— AXn=0 B, IVXAXn=0
kile, 14— ke, VYV =0 V=0 [e,X4A+VV)n=0
- V' A=0 An=0
V-(— k3le, (4 +VI)=0
F.¢ VX[, JVXF -V V-F~ [kK,]VXFXn=0 FXn=0
k§lw, JF —k3[p V=0  [pJF+V¢)n=0 y=0
Fn=0 kV-F=0
V- (— k3, J(F + V) =0
TABLE 1I

SUMMARY OF THE DIFFERENT FUNCTIONALS AND BOUNDARY CONDITIONS

Boundary Conditions

Electric Wall Magnetic Wall
Description Functional Natural Dirichlet Natural Dirichlet

KA, V)= [ VX A4*,]V X 4+ AXn=0 [3lVXAXn=0

AV VANV 4— V=0 [e,A+VV) n=0
k2(A*e, 1A + A*[e,IVV +
Ve, JA+ VIV *e,IVV)dQ vV-A=0 An=0
KF,9)= [ VXF{,VXF+ []VXFXn=0 Fxn=0

Q

F,y V-F'x,V-F — [, XF+V¢)-n=0 =0
k3w, IF + F*[p, ]V +
Vi, IF + Vi, V) dQ Fn=0 «kV-F=0

describes an exact gradient field, so there is no reason for
spurious solutions arising from the discretization.

Indeed, if the differential equations (8) and (11) are
solved with the boundary conditions (13)~(15) on electric
walls and (16)—(18) on magnetic walls, no spurious modes
are present in the finite-clement solution.

For the description in terms of an electric vector poten-
tial, F, and a magnetic scalar potential, ¢ (F, formula-
tion), the potentials are introduced as

D=-VXF (19)

H=joF -V’

The same discussion can be carried out as in the case of
A,V formalism.

The differential equations and boundary conditions in
the different formulations are summarized in Table 1.

III. FuncTioNAL FORMULATION AND FINITE
EiemMeNT REALIZATION

The differential equations and boundary conditions are
of the same form for both the 4,V and the F,{ descrip-
tion. Therefore, only the notations of the A4,) formula-
tion will be used, but the results are directly applicable to
the F,¢ case as well.

20)

For the solution of differential equations (8) and (11),
the following functional has to be extremized:

I(A,V)= fn(v X A*[1,]V X A +V-4*yV-4) dQ
- kng(A +VV)[e,1(A+VV)dQ. (21)

The first variation of I(A4,V) has to be zero with respect

to both 4* and V'*:

8,.1(A,V) =/Q[V X[1,]VX A—-Vu¥-4
— k2[e,)(A4+VV)]-84%dQ

—9?‘([1/,]V X AXn)-84*dT

+@uV-dn-34*dl' =0 (22)
r

85, 1(A,V) =f9k§[ —V-[e,](4+VV)]6V*dQ

+(j§k§[e,](A +VV)-ndV*dl =0. (23)

Conditions (22) and (23) of zero variation are fulfilled,
provided that the differential equations (8) and (11) to be
solved are satisfied and boundary condition (15) on elec-
tric walls and boundary conditions (16) and (17) on mag-
netic walls hold. These are the natural boundary condi-
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tions of the functional (21). Evidently, the remaining
Dirichlet boundary conditions, (13), (14), and (18), must
be satisfied explicitly.

A summary of the different functionals and boundary
conditions is found in Table II.

In the following, advantage is taken of the fact that
every field quantity varies in a special way with the
coordinate z:

O(x,y,2) =Q(x,y)e™P* (24)

where B is the propagation coefficient. In this case, the
vector and scalar potentials can be written as

A(x,y,z) = [Ax(x,y)ex +A,(x,y)e,
+jA,(x, y)ez] e Bz (25)
V(x,y,z)=V(x,y)e . (26)

Standard two-dimensional finite-element techniques
can be used for the discretization. In the present imple-
mentation, eight-node isoparametric finite elements have
been employed. The components of the vector potential,
as well as those of the scalar potential, are continuous by
the nature of the finite-element method. The continuity
of the appropriate field components follows from the
continuity of the potentials and from the natural interface
conditions of the functional (21). Performing the dis-
cretization, the following generalized eigenvalue problem

is obtained:
My, 0 k2 Nya N [A]=0
0 0 9IN,, Ny LV )
The matrices M and N are symmetric and sparse. The

matrix M is, however, singular; as seen in (27) it has as
many zero rows and columns as the number of scalar

(27)

potential unknowns (n;). Thus, the first nonzero :

wavenumber is the (n,, + Dth eigenvalue of (27). The zero
eigenvalues correspond to the eigenvectors describing
vanishing vector potentials and arbitrary scalar potentials
and are obtained as exactly zero during the numerical
solution.

The eigenvalue problem has been solved by the bisec-
tion method [13], with the sparsity of the matrices fully
utilized.

IV. ExaMPLES

The first example is an embedded dielectric waveguide
with anisotropic material characteristics. The region was
bounded by electric walls at a distance of about Sw. It was
assumed that there was no propagation in the transversal
plane at the values of B investigated. The number of
degrees of freedom in the finite-element calculation was
772. The dispersion characteristics of the first mode are
shown in Fig. 1(b), and the agreement with the curve of
Koshiba [4] is satisfactory. The distribution of the propa-
gating power is illustrated in Fig. 1(c) by the lines of the
constant z component of the Poynting vector for the
same mode.
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Fig. 1. (a) Embedded dielectric waveguide. (b) Dispersion characteris-
tics of an embedded dielectric waveguide. (¢) Distribution of power
propagating in the z direction in an embedded dielectric waveguide.

The second example is a ferrite-loaded waveguide of
rectangular cross section. The relative permittivity and
permeability have been chosen based on the work of

, Hano [6]. The values are

0875 00 —j0375
00 1.0 0.0
j0375 0.0 0.875

&, =10 2] =
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TABLE 111 .
CoMPARISON OF WAVENUMBERS OBTAINED BY THE Two FORMULATIONS FOR A FERRITE-LOADE
RECTANGULAR WAVEGUIDE

Formulation: AV F.§
Degrees of Freedom: 424 536

Ba kya kgpa koa koa

-1 0.8925 1.483 0.8925 1.485

0 0.8095 1.438 0.8095 1.440

1 0.9700 1.492 0.9700 1.494

Y
o
. €alo /€r].“\1r] €oslo i
B
Vacuump Ferrite Vacuum y oot ! ' ' f
a’lk a’l S5a/4 X
- 0.20006+01
(a)
-——+2 direction
0. 1000E+04 1~ —— -z direction ]
1 1
0-0000BH 0 Fo0  0.10EW1  0.15ER01  0.6%01  0.ZER1  0.0E%01
KO*Av
© )

Fig. 2. (a) Ferrite-loaded waveguide. (b) Dispersion characteristics of an anisotropic ferrite-loaded waveguide. (c)
Distribution of power propagating in the z direction in an anisotropic ferrite-loaded waveguide. Third mode, 8/ k,=1.90,

koa =2.91.

In general, the permeability tensor depends on the
frequency. In our example (based on [6]), the frequency
dependence was neglected, it was assumed that the per-
meability tensor is approximately constant in the fre-
quency range studied. The description presented is not
applicable for the frequency-dependent case because k?
is treated as an eigenvalue.

Information on the discretization and a comparison of
the 4,V and F,{ version are given in Table IIl. The
dispersion curves of the first two modes for both positive
and negative propagation have been computed and com-
pared with the results of Hano [6]. The curves are shown
in Fig. 2(b); the agreement is good. The lines of the
constant z component of the Poynting vector are plotted
in Fig. 2(c) for the third mode.

The third example is an inhomogeneously loaded wave-
guide of elliptic cross section. The material characteristics

are described by the following tensors:

[e,,]=¢100 10.0 10.0)

[ 0.875 0.0 —j0.375
[e.]=]00 1.0 0.0
j0.375 0.0 0.875
- [225 00 00
[e..]=|0.0 225 0.0|[p,.]=<1 1 1).
(00 00 15

The discretization and a comparison between the two
versions are given in Table IV. The dispersion character-
istics of the first two modes are plotted in Fig. 3(b). The
lines of the constant z component of the Poynting vector
are shown in Fig. 3(c), for the third mode.
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TABLE 1V
COMPARISON OF WAVENUMBERS OBTAINED BY THE TwO FORMULATIONS FOR A
DieLECTRIC- AND FERRITE-LOADED WAVEGUIDE
oF ErLipTIiC CROSS SECTION

Formulation: A,V F,§
Degrees of Freedom: 548 612
Ba koa kopa kga kppa
-6 2.3585 2.3959 2.3603 2.3962
0 0.8057 1.2753 0.8051 1.2757
6 2.2234 2.5376 2.2242 2.5388
y
A
lered, [Hae] leael, luarl ¢
<
fy 0.4000Es01 T T T T
X [ii]
0.3000E+04 — -
a
()
0.2000E+01 — =
i
1
!
L ! —— first mode a
O-100mEsot : ----second mode
i
!
1
1
o 14 | ! ! I
0.00E+00 0.10640¢ 0.20E+01 0.306404 0406301 0.50E404 0.60E+01
KOMA
(b)

©
(a) Dielectric and ferrite loaded waveguide of elliptic cross section. (b) Dispersion characteristics of a dielectric and
ferrite loaded waveguide of elliptical cross section. (¢) Distribution of power propagating in the z direction in a dielectric
and ferrite loaded waveguide of elliptical cross section. Third mode, B / k(= 1.41, kqa = 70.800.

Fig. 3.

REFERENCES

[1] O. Biro and K. Preis, “On the use of the magnetic vector potential
in the finite element analysis of 3-D eddy currents,” IEEE Trans.
Magn., vol. 25, pp. 3145-3159, July 1989.

[2] 1. Bardi and O. Biro, “Improved finite element formulation for
dielectric loaded waveguides,” IEEE Trans. Magn., vol. 26, pp.
450-453, Mar. 1990.

[3] K. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, “Vectorial
finite-element method without any spurious solutions for dielectric
waveguide problems using transverse magnetic-field components,”
IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1120-1124,
Nov. 1986.

[4] M. Koshiba, K. Hayata, and M. Suzuki, “Improved finite-element
formulation in terms of the magnetic field vector for dielectric
waveguides,” IEEE Trans. Microwave Theory Tech., vol. MTT-33,
pp. 227-233, Mar. 1985.

[5] N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite-element
analysis of optical waveguides,” IEEE Trans. Microwave Theory
Tech., vol. MTT-29, pp. 600-605, June 1981.

{6] M. Hano, ‘““Vector finite-element solution of anisotropic wave-
guides using novel triangular elements,” Electron. and Commun.
Japan, part 2, vol. 71, no. 8, pp. 71-80, 1988.

[7] J. P. Webb, “Efficient generation of divergence-free fields for the

finite element analysis of 3D cavity resonances,” IEEE Trans.
Magn. vol. 24, pp. 162-165, Jan. 1988.

[8] M. J. McDougall and J. P, Webb, “Infinite elements for the analysis
of open dielectric waveguides,” IEEE Trans. Microwave Theory
Tech., vol. 37, pp. 1724-1731, Nov. 1989.

[9] J. A. M. Svedin, “A numerically efficient finite-element formulation
for the general waveguide problem without spurious modes,” IEEE
Trans. Microwave Theory Tech., vol. 37, pp. 1708-1715, Nov. 1989.

{10] M. Koshiba, K. Hayata, and M. Suzuki, Finite-element formula-
tion in terms of the electric-field vector for electromagnetic wave-
guide problems,” IEEE Trans. Microwave Theory Tech., vol. MTT-
33, pp. 900-905, Oct. 1985.

[11] T. Angkaew, M. Matsuhara, and N. Kugamai, “A novel approach
that eliminates spurious modes,” IEEE Trans. Microwave Theory
Tech., vol. MTT-35, pp. 117-123, Feb. 1987.

[12] K. Hayata, M. Eguchi, and M. Koshiba, “Finite-element formula-
tion for guided-wave problems using transversal electric field com-
ponents,” IEEE Trans. Microwave Theory Tech., vol. 37, pp.
256-258, Jan. 1989,

[13] H. R. Schwartz, FORTRAN — Programme zur Methode der finiten
Elemente. Stuttgart: B. G. Teubner, 1981.

[14] J. F. Lee, D. K. Sun, and Z. 1. Cendes, “Tangential vector finite
elements for electromagnetic field computation,” presented at
Fourth Biennial IEEE Conf. Electromagnetic Field Computation,
Toronto, Canada, Oct. 22-24, 1990.



BARDI AND BIRO: AN EFFICIENT FINITE-ELEMENT FORMULATION 1139

Oszkar Biro was born in Hungary on August 15,
1954. He received the Dipl. Ing. degree in elec-
trical engineering in 1977 and the dr. techn.
degree in 1979, both from the Technical Univer-
sity of Budapest, Hungary. He received the de-
gree of Candidate of Sciences (on the subject of
electromagnetic computations) from the Hun-
garian Academy of Sciencies, Budapest,.in 1987.
From 1977 to 1987 he was in the Department
magnetic Theory of the Technical University of of Electromagnetic Theory of the Technical
Budapest since 1970 and is now an Associate University of Budapest. Since 1987, he has been
Professor. Presently he is a Guest Professor at the Graz University. of  with the Graz University of Technical of Technology, Graz, Austria. His
Technology, Graz, Austria. In 1990, he spent six months with the résearch focuses on numerical methods of electromagnetic field compu-
Electrical Engineering Department of McGill University, Montreal, tations. ‘ -
Canada, as a Visiting Professor. His research deals mainly with numeri-
cal methods of electromagnetic field computations.

Istvan Bardi was born in Hungary on July 11,
1947. He received the Dipl. Ing: degree in elec-
trical engineering in 1970 and the dr. techn.
degree in 1983, both from the Technical Univer-
sity of Budapest, Hungary. He received the de-
gree of Candidate of Technical Sciences (on the
subject of electromagnetic computations) from
the Hungarian Academy of Sciencies in 1982.
He has been with the Department of Electro-




