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An Efficient Finite-Element Formulation

Without Sp)urious Modes for
Anisotropic Waveguides

Istvan Bardi and Oszkar Biro

Abstract —A numerically efficient finite-element formulation
is presented for the analysis of lossless, inhomogeneourdy loaded,
anisotropic waveguides of arbitrary shape. The electromagnetic
field is described either by the three components of a magnetic
vector potential and an electric scalar potential or by the three
components of an electric vector potential and a magnetic scalar
potential. The uniqueness of the potentials is ensured by the
incorporation of the Coulomb gauge and by proper boundary
conditions. Owing to the implementation of the solermidality
condition for the vector potential even in the case of zero
wavenumber, no spurious modes appear. Variational expres-
sions suited to the finite-element method are formulated in
terms of the potentials. Standard finite-element techniques are
employed for the numerical solution, leading to a generalized
eigenvahte problem with symmetric, sparse matrices. ‘I’his is

solved by means of the bisection method with the sparsity of the
matrices fully utilized. Dielectric- and ferrite-loaded waveguides

with closed and open boundaries and including both isotropic
and anisotropic materials are presented as examples.

I. INTRODUCTION

sEVERAL finite-element formulations are in current

use for solving Iossless, inhomogeneously loaded, arbi-

trarily shaped waveguide problems including anisotropic

material characteristics. The problem of the occurrence of

nonphysical, spurious solutions can be considered tcj have

been overcome. There are many ways of avoiding these

spurious solutions. The efficiency of the finite-element

codes depends to a large extent on the formulation used

for getting rid of spurious modes.

The basic cause of the spurious modes lies in the

inaccurate approximation of the zero eigenvalues arid the

corresponding eigenfunctions. The eigenfunctions belong-

ing to the zero eigenvalue represent gradient fields satis-

fying the wave equation at zero wavenumber. Since the

multiplicity of the zero eigenvalue is infinite, any given

finite discretization, however fine, is bound to be inca-

pable of approximating some strongly varying gr:idient
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eigenfunctions. The resulting

ei~envalues are nonzero and are

inaccurate approximate

encountered as spurious

modes that are difficult to distinguish from th-e truly

nonzero wavenumbers. The divergence of the eigenfunc-

tions belonging to the zero eigenvalue is not zero.

The key to the elimination of spurious solutions is the

enforcement of the zero divergence of the vector field

used for the description. The formulations differ in the

way of incorporating this solenoidality condition.

Hayata et al. [3] employ the three components of the

magnetic field intensity for the description. The z compo-

nent of the magnetic field intensity is expressed by the

transversal components from the condition of zero diver-

gence. Thus, the Coulomb gauge is imposed on H, and no

spurious modes appear. The method has some disadvan-

tageous properties: it is not applicable to the case of 3-D

cavities, and the realization is rather complicated, leading

to dense matrices with matrix inversions having to be

performed.

Webb [7] imposes the Coulomb gauge by means of a

kind of penalty factor method. There are no spurious

modes and sparse matrix techniques are applicable but, as

a consequence of the Lagrange multipliers, a time-con-

suming iteration method has to be employed for the

solution of the generalized eigenvalue problem.

Hano [6] uses the three components of either the

electric or the magnetic field intensity. The curl–curl

operator is used. Special triangular elements ensure the

continuity of the tangential components of the field vec-

tors only with no constraint on the normal components.

No spurious modes appear and there are as many zero

eigenvalues as the number of unknowns representing I:he

z component of the field. The implementation of the

special triangular elements in a finite element code is

rather c~mplicated.

Svedin [9] uses all six components of the electric and

magnetic field intensities. The first-order Maxwell equa-

tions are discretized and special measures are taken to

enforce the interface conditions on the normal compo-
nents. The divergence of the vectors applied is fixed

implicitly to zero, so no spurious modes appear. The six

variables and the additional interface conditions are the

disadvantageous properties of the method. The finite-ele-
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ment code presented is valid for the case of Iossy media,

too.

A recently introduced possibility of avoiding the spuri-

ous solutions is the application of the edge element

approximation [14]. The edge element approximation sets

the multiplicity of the zero eigenvalue in the discretized

problem to a finite number known in advance, so the zero

eigenvalues can be approximated with good accuracy.

In this paper, a standard finite-element method based

on nodal elements is presented. The three components of

a vector potential together with a scalar potential are

used for the description of the electromagnetic field. Two

types of potentials are introduced: a magnetic vector

potential with an electric scalar potential and an electric

vector potential with a magnetic scalar potential. The

Coulomb gauge is imposed based on the work of Biro

et al. [1]. Owing to the uniqueness of the vector potential

employed and to the fact that the solenoidality condition

is ensured even in the case of zero wavenumber, no

spurious modes appear. The method uses four scalar

variables, a disadvantage offset by the simplicity of the

finite element realization that leads to sparse matrices.

Both the magnetic and the electric vector potential de-

scriptions can be applied to both dielectric- and ferrite-

loaded waveguides, so mixed structures can be analyzed

by both methods. The method is valid for the case of

anisotropic and 10SSY materials as well. Presently, an

eight-node, isoparametric finite-element code is installed

for the case of ideal, anisotropic materials. The examples

presented serve to test the method and to show its appli-

cability to various types of problems.

II. POTENTIAL DESCRIPTIONS

A waveguide inhomogeneously loaded with anisotropic

dielectric and magnetic materials is considered. The cross

section, Q, of arbitra~ shape is in the x – y plane and its

boundary, I’, consist partly of a perfect electric conductor

and partly of a perfect magnetic wall. The relevant

Maxwell equations for the time harmonic case are

VII= jtieO[er]E (1)

VxE=–joWOIW, ]H (2)

where [~, ] and [p,] are the tensors of the relative permit-
tivity and permeability, respectively,

For the description by a magnetic vector potential, A,

and an electric scalar potential, V (A, V formulation), the

potentials are introduced as

B=VXA (3)

E=–jwA– VV’. (4)

The following differential equation is to be satisfied by

these potentials:

VX[Vr]V XA–k;[Er]A –k;[Er]VV=O (5)

where

~ = j~v (6)

[vr]=[~r]-’. (7)

The vector potential, A, is not defined in a unique way by

(3). Following [11,an additional term is added to (5) in
order to fix the divergence of the vector potential to zero:

VXIV,]V XA– VV,V.A– k;[e,]A-k;[C,]VV=O (8)

where

1
vF=; Tr[vr]. (9)

The constant v, is arbitrav, the choice (9) is based on

dimensional reasons. “Tr” denotes the trace of the ten-

sor. Since the equation

V“(jcoD)=O (lo)

no more follows from (8), this has to be prescribed explic-

itly:

V@k&,](A+VV))=O. (11)

A further equation follows by taking the divergence of (8),

provided (11) holds:

V2(V,V”A) = O. (12)

This consequence equation states that the Laplacian of

vrV” A vanishes. In order to make the vector potential

obtained as the solution of the differential equations (8)

and (11) unique, the following bounda~ conditions have

to be fulfilled [1]:

AXn=O

I

(13)

V=o on electric walls (14)
v,V.A = O (15)

and

[v,] VXAXn=O

1

(16)

–k;[e, ](A+VV)”rz=O on magnetic walls (17)

A“n=O. (18)

Note that the boundary conditions (13) and (14) state that

the tangential component of the electric field intensity

vanishes on electric walls, and conditions (16) and (17) set

the tangential component of the magnetic field intensity

and the normal component of the electric flux density to

zero on magnetic walls. lt can be shown [1] that these two

condition imply that the normal derivative of v,VOA is

zero on magnetic walls, too. Hence, as a consequence of

(12) and of boundary condition (15), the Coulomb gauge
is satisfied by the vector potential A. Its uniqueness then

follows from the boundary conditions (13) and (18). The

uniqueness condition of the vector potential coincides

with the solenoidality condition, which is ensured even in

the case of k; = O. This means that when the vector

potential represents a gradient field, not only its curl but

also its divergence is zero; thus, in view of the boundary

conditions (13) and (18), the vector potential itself van-

ishes, too. ln this case, the ambiguity is represented by

the scalar potential, V, being arbitra~. Obviously, any

approximation of a scalar function by nodal elements
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TABLE I
SUMMARY OF THE DIFFERENTI.4L EQUATIONS AND BOUNDARY CONDITIONS

OF DI ~FERENT DESCRIPTIONS

Boundary Conditions

Description Differential Equations Electric Wall Magnetic Wall

A, V VX[v,]VXA– Vv~V.A– AXn=O [Vr]VXAXn=O

k;[cr]zl – k&]vv= o V=o [..1(’4 +Vv)n = o
vrV.A = O A.n=O

V(- @[.r](A +VV)) = O

F,* VX[Kr]VXF– VK,.V. F– [Kr]v XFXn=o FXn=O

k;[/-@ – k:[wrlvlj = o [Prl(F+v*)”rz=o *=O
F.n=O K,V.F = O

V(- I@/LJ(F + V+)) = O

TABLE II
SUMMARY OF THE DIFFERENT FUNCTIONAL AND BOUNDARY CONDITIONS

Boundary Conditions

Electric Wall Magnetic Wall

Description Functional Natural Dirichlet Natural Dirichlet

I(A, V) = /QV X A“[.r]V X A + AXn=O [vr]VXAXn=O

A,V V. A”V,VA – V=o [6,1(’4+Vv). n= o
@(A*[EJA + A*[c,]VV+

VV*[Er]A + VV*[er]VV)dfl v,V.A = O A.n=O

I(F, tj)=/VXF*[Kr]VXF+ [Kr]VXFXtZ=O FXn=O

F, I/I V. F’K,V. 1$– [L%m’+w)”rz=o *=0
/t@*[jLr]F + F*[jLr]V~ +

Vt//*[/.Lr]F + Vtj*[/.LJV@)df2 F.n=O KrV. F = O

describes an exact gradient field, so there is no reason for

spurious solutions arising from the discretization.

Indeed, if the differential equations (8) and (II) are

solved with the boundary conditions (13)–(15) on e]ectric

walls and (16)–(18) on magnetic walk., no spurious modes

are present in the finite-element solution.

For the description in terms of an electric vector poten-

tial, F, and a magnetic scalar potential, @ (F, ~ formula-

tion), the potentials are introduced as

D=VXF (19)

H=j@F– V#’. (20)

The same discussion can be carried out as in the case of

A, V formalism.

The differential equations and bounda~ conditions in

the different formulations are summarized in Table I.

III. FUNCTIONAL FORMULATION AND FINITE

ELEMENT REALIZATION

The differential equations and boundary conditions are

of the same form for both the A, V and the F,* descrip-

tion. Therefore, only the notations of the A, V formula-

tion will be used, but the results are directly applicable to

the F,@ case as well.

For the solution of differential equations (8) and (11),

the following functional has to be extremized:

I(A, V) =/ (v x A’[vr]v x A +v”A*vrv”A)dQ
a

J–k; J4+VV)[e, ](A+VV)dQ. (21)

The first variation of 1(A, V) has to be zero with respect

to both A* and V*:

8~.~(A,V)=/ [V X[v, ]Vx A–Vv,V.A

~k&](A+VV)]”8A*d Q

-$([..]VXAXnJ8A*d~
r

$
+ v,V”An. 8A*dr = 0 (22)

r

8v.I(A, V)=~k~[ –V”[c,](A +VV)]8V*dQ
a

+$k~[~.](A +VV)”n8V*dr = O. (23)
r

Conditions (22) and (23) of zero variation are fulfilled,

provided that the differential equations (8) and (11) to be

solved are satisfied and boundary condition (15) on elec-

tric walls and boundary conditions (16) and (17) on mag-

netic walls hold. These are the natural boundary condi-
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tions of the functional (21). Evidently, the remaining

Dirichlet boundary conditions, (13), (14), and (18), must

be satisfied explicitly.

A summary of the different functional and boundary

conditions is found in Table II.

In the following, advantage is taken of the fact that

every field quantity varies in a special way with the

coordinate z:

Q(.x, y,z)=Q(x, y)e-jpz (24)

where ~ is the propagation coefficient. In this case, the

vector and scalar potentials can be written as

A(x, y,z) = [Ax(x, y)ex+Ay(x, y)ey

+j~z(x, y)ez]e-j~z (25)

V(x, y,z)=V(x, y)e-jPz. (26)

Standard two-dimensional finite-element techniques

can be used for the discretization. In the present imple-

mentation, eight-node isoparametric finite elements have

been employed. The components of the vector potential,

as well as those of the scalar potential, are continuous by

the nature of the finite-element method. The continuity

of the appropriate field components follows from the

continuity of the potentials and from the natural interface

conditions of the functional (21). Performing the dis-

cretization, the following generalized eigenvalue problem

is obtained:

The matrices M and N are symmetric and sparse. The

matrix M is, however, singular; as seen in (27) it has as

many zero rows and columns as the number of scalar
potential unknowns (nv). Thus, the first nonzero

wavenumber is the (nv + I)th eigenvalue of (27). The zero

eigenvalues correspond to the eigenvectors describing

vanishing vector potentials and arbitrary scalar potentials

and are obtained as exactly zero during the numerical

solution.

The eigenvalue problem has been solved by the bisec-

tion method [13], with the sparsity of the matrices fully

utilized.

IV. EXAMPLES

The first example is an embedded dielectric waveguide

with anisotropic material characteristics. The region was

bounded by electric walls at a distance of about 5w. It was

assumed that there was no propagation in the transversal

plane at the values of ~ investigated. The number of

degrees of freedom in the finite-element calculation was

772. The dispersion characteristics of the first mode are

shown in Fig. l(b), and the agreement with the curve of

Koshiba [4] is satisfactory. The distribution of the propa-

gating power is illustrated in Fig. l(c) by the lines of the

constant z component of the Poynting vector for the

same mode.
I

Y
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0.Z312Z+01
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0.2297+01-

— -*
Fig. 1. (a) Embedded dielectric waveguide. (b) Dispersion characteris-
tics of an embedded dielectric waveguide. (c) Distribution of power
propagating in the z direction in an embedded dielectric waveguide.

The second example is a ferrite-loaded waveguide of

rectangular cross section. The relative permittivity and

permeability have been chosen based on the work of

Hano [6]. The values are .—

[

0.875 0.0 – jO.375

E2, = 10
1

[I-%r]= 0.0 1.0 0.0 .
jO.375 0.0 0.875
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TABLE III
COMPARISON OF WAVENUMBERS OBTAINED BY THE Two FORMULATIONS FOR A FERRITE-LOADED

RECTANGULAR WAVEGUIDE

Formulation: A,V F, #
Degrees of Freedom: 424 536

pa kola koza kola koza

–1 0.8925 1.483 0.8925 1.485
0 0.8095 1.438 0.8095
1

1.440
0.9700 1.492 0.9700 1.494

L a/4 a/ ‘r 5a/6
x

(a)

(c)

o
$
~ 0.3XK+01

o.amo301

O. KCCE+U

O.mcwm
0.5

--—+z direction

—-z direction

I

I‘
I
I

I I I I
al o. 1(Y3OI o.B30i 0.20304 0.25301 0.: 301

KO*A

(b)

Fig. 2. (a) Ferrite-1oaded waveguide. (b) Dispersion characteristics of an anisotropic ferrite-loaded wave.guide. (c)

Distribution of power propagating in the z direc~ic,n in an anisotropic ferrite-loaded wa{eguide. Third mode, ~ /~n = 1.90,

koa = 2.91.

In general, the permeability tensor depends on the

frequency. In our example (based on [6]), the freqpency

dependence was neglected, it was assumed that the per-

meability tensor is approximately constant in the fre-

quency range studied. The description presented is not

applicable for the frequency-dependent case because k:

is treated as an eigenvalue.

Information on the discretization and a comparison of

the A, V and F, 4 version are given in Table 111. The

dispersion curves of the first two modes for both positive

and negative propagation have beeri computed and com-
pared with the results of Hano [6], The curves are shown

in Fig. 2(b); the agreement is good. The lines of the

constant z component of the Poynting vector are plotted

in Fig. 2(c) for the third mode.

The third example is an inhomogeneously loaded wave-

guide of elliptic cross section. The material characteristics

are described by the following tensors:

[Cr,] = (10.0 10.0 10.0)

[

0.875 0.0 – jO.375

[1-k]= 0.0 1.0 0.0
jO.375 0.0 0.875 1

‘[ 2.25 0.0
[Er,] = 0.0

1
2.25 ~:; [M.z]=(l 1 1).

0.0 0.O 1,5

The discretization and a comparison between the two

versions are given in Table IV. The dispersion character-

istics of the first two modes are plotted in Fig. 3(b). ‘rhe

lines of the constant z component of the Poynting vector

are shown in Fig. 3(c), for the third mode.
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[1]

[2]

[3]

[4]

[5]

[6]

[7]

TABLE IV

COMPARISON OF WAVENUMBERS OBTAINED BY THE Two FORMULATIONS FOR A
DIELECTRIC- AND FERRITE-LOADED WAVEGUIDE

OF ELLIPTIC CROSS SECTION

Formulation: A,V F,+

Degrees of Freedom: 548 612

/3. kola ko~a kola koza

–6 2.3585 2.3959 2.3603 2.3962

0 0.8057 1.2753 0.8051 1.2757

6 2.2234 2.5376 2.2242 2.5388

Y

&
[c,,],

‘4
x

L a -4

(a)

(c)

o
$
~ o.4xcs+01
m

0.3XCE+W

0.2mE+.3!

0. 103330!

O.uxcea
0.(

I I I I I

— first mode
---- second mode

i
I
I
1

I I I I I
co O.lCE+O1 o. Zt1301 0.31Wi O.QW1 Osmoi 0

—
:*1

KOUA

(b)

Fig. 3. (a) Dielectric and ferrite loaded waveguide of elliptic cross section. (b) Dispersion characteristics of a dielectric and
ferrite loaded wavewride of elli~tical cross section. (c) Distribution of Dower urouagatirw in the z direction in a dielectric

and ferrite loaded ;aveguide of elliptical cross section. Third mode, ~; k. = i.41~ ~Oa =-70.800.
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